modification of work by Stephen Ausmus, USDA ARS)

LINK TO LEARNING

Watch botanist Wendy Hodgson, of Desert Botanical Garden in Phoenix, Arizona, explain how agave plants were cultivated for food hundreds of years ago in the Arizona desert in this wideo: (http://openstax.org/l/ancient_crop) Finding the Roots of an Ancient Crop.

Some aerial modifications of stems are tendrils and thorns (<u>Figure 30.14</u>). **Tendrils** are slender, twining strands that enable a plant (like a vine or pumpkin) to seek support by climbing on other surfaces. **Thorns** are modified branches appearing as sharp outgrowths that protect the plant; common examples include roses, Osage orange, and devil's walking stick.

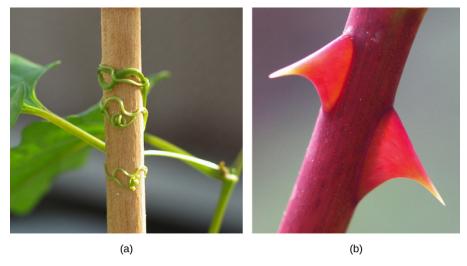


Figure 30.14 Found in southeastern United States, (a) buckwheat vine (*Brunnichia ovata*) is a weedy plant that climbs with the aid of tendrils. This one is shown climbing up a wooden stake. (b) Thorns are modified branches. (credit a: modification of work by Christopher Meloche, USDA ARS; credit b: modification of work by "macrophile"/Flickr)

30.3 Roots

By the end of this section, you will be able to do the following:

- Identify the two types of root systems
- Describe the three zones of the root tip and summarize the role of each zone in root growth
- Describe the structure of the root
- List and describe examples of modified roots

The roots of seed plants have three major functions: anchoring the plant to the soil, absorbing water and minerals and transporting them upwards, and storing the products of photosynthesis. Some roots are modified to absorb moisture and exchange gases. Most roots are underground. Some plants, however, also have **adventitious roots**, which emerge above the ground from the shoot.

Types of Root Systems

Root systems are mainly of two types (Figure 30.15). Dicots have a tap root system, while monocots have a fibrous root system. A tap root system has a main root that grows down vertically, and from which many smaller lateral roots arise. Dandelions are a good example; their tap roots usually break off when trying to pull these weeds, and they can regrow another shoot from the remaining root. A tap root system penetrates deep into the soil. In contrast, a fibrous root system is located closer to the soil surface, and forms a dense network of roots that also helps prevent soil erosion (lawn grasses are a good example, as are wheat, rice, and corn). Some plants have a combination of tap roots and fibrous roots. Plants that grow in dry areas often have deep root systems, whereas plants growing in areas with abundant water are likely to have shallower root systems.

Figure 30.15 (a) Tap root systems have a main root that grows down, while (b) fibrous root systems consist of many small roots. (credit b: modification of work by "Austen Squarepants"/Flickr)

Root Growth and Anatomy

Root growth begins with seed germination. When the plant embryo emerges from the seed, the radicle of the embryo forms the root system. The tip of the root is protected by the **root cap**, a structure exclusive to roots and unlike any other plant structure. The root cap is continuously replaced because it gets damaged easily as the root pushes through soil. The root tip can be divided into three zones: a zone of cell division, a zone of elongation, and a zone of maturation and differentiation (Figure 30.16). The zone of cell division is closest to the root tip; it is made up of the actively dividing cells of the root meristem. The zone of elongation is where the newly formed cells increase in length, thereby lengthening the root. Beginning at the first root hair is the zone of cell maturation where the root cells begin to differentiate into special cell types. All three zones are in the first centimeter or so of the root tip.

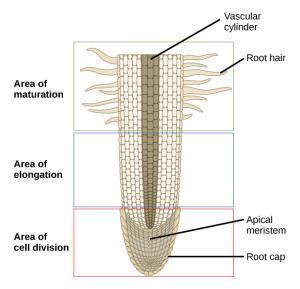


Figure 30.16 A longitudinal view of the root reveals the zones of cell division, elongation, and maturation. Cell division occurs in the apical meristem.

The root has an outer layer of cells called the epidermis, which surrounds areas of ground tissue and vascular tissue. The

epidermis provides protection and helps in absorption. **Root hairs**, which are extensions of root epidermal cells, increase the surface area of the root, greatly contributing to the absorption of water and minerals.

Inside the root, the ground tissue forms two regions: the cortex and the pith (Figure 30.17). Compared to stems, roots have lots of cortex and little pith. Both regions include cells that store photosynthetic products. The cortex is between the epidermis and the vascular tissue, whereas the pith lies between the vascular tissue and the center of the root.

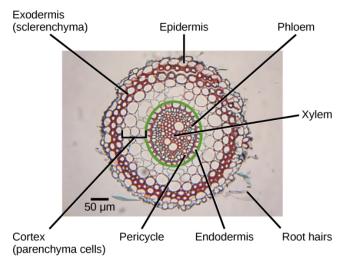


Figure 30.17 Staining reveals different cell types in this light micrograph of a wheat (*Triticum*) root cross section. Sclerenchyma cells of the exodermis and xylem cells stain red, and phloem cells stain blue. Other cell types stain black. The stele, or vascular tissue, is the area inside endodermis (indicated by a green ring). Root hairs are visible outside the epidermis. (credit: scale-bar data from Matt Russell)

The vascular tissue in the root is arranged in the inner portion of the root, which is called the **stele** (Figure 30.18). A layer of cells known as the **endodermis** separates the stele from the ground tissue in the outer portion of the root. The endodermis is exclusive to roots, and serves as a checkpoint for materials entering the root's vascular system. A waxy substance called suberin is present on the walls of the endodermal cells. This waxy region, known as the **Casparian strip**, forces water and solutes to cross the plasma membranes of endodermal cells instead of slipping between the cells. This ensures that only materials required by the root pass through the endodermis, while toxic substances and pathogens are generally excluded. The outermost cell layer of the root's vascular tissue is the **pericycle**, an area that can give rise to lateral roots. In dicot roots, the xylem and phloem of the stele are arranged alternately in an X shape, whereas in monocot roots, the vascular tissue is arranged in a ring around the pith.

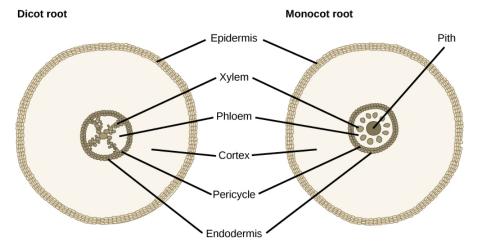


Figure 30.18 In (left) typical dicots, the vascular tissue forms an X shape in the center of the root. In (right) typical monocots, the phloem cells and the larger xylem cells form a characteristic ring around the central pith.

Root Modifications

Root structures may be modified for specific purposes. For example, some roots are bulbous and store starch. Aerial roots and

prop roots are two forms of aboveground roots that provide additional support to anchor the plant. Tap roots, such as carrots, turnips, and beets, are examples of roots that are modified for food storage (Figure 30.19).

Figure 30.19 Many vegetables are modified roots.

Epiphytic roots enable a plant to grow on another plant. For example, the epiphytic roots of orchids develop a spongy tissue to absorb moisture. The banyan tree (*Ficus* sp.) begins as an epiphyte, germinating in the branches of a host tree; aerial roots develop from the branches and eventually reach the ground, providing additional support (*Figure 30.20*). In screwpine (*Pandanus* sp.), a palm-like tree that grows in sandy tropical soils, aboveground prop roots develop from the nodes to provide additional support.

Figure 30.20 The (a) banyan tree, also known as the strangler fig, begins life as an epiphyte in a host tree. Aerial roots extend to the ground and support the growing plant, which eventually strangles the host tree. The (b) screwpine develops aboveground roots that help support the plant in sandy soils. (credit a: modification of work by "psyberartist"/Flickr; credit b: modification of work by David Eikhoff)

30.4 Leaves

By the end of this section, you will be able to do the following:

- · Identify the parts of a typical leaf
- Describe the internal structure and function of a leaf
- Compare and contrast simple leaves and compound leaves
- List and describe examples of modified leaves

Leaves are the main sites for photosynthesis: the process by which plants synthesize food. Most leaves are usually green, due to the presence of chlorophyll in the leaf cells. However, some leaves may have different colors, caused by other plant pigments that mask the green chlorophyll.

The thickness, shape, and size of leaves are adapted to the environment. Each variation helps a plant species maximize its chances of survival in a particular habitat. Usually, the leaves of plants growing in tropical rainforests have larger surface areas than those of plants growing in deserts or very cold conditions, which are likely to have a smaller surface area to minimize water loss.